CFI Brief: Airport Hot Spot

Ever heard of an airport hot spot, or wondered what that is? No, it’s not a scorching hot section of an airport, it’s more along the lines of the cool hip place to be at an airport. A hot spot is defined as a location on an airport movement area with a history of potential risk of collision or runway incursion, and where heightened attention by pilots and drivers is necessary.

These hot spot areas on the airport are found to be particularly complex and/or confusing and often times heavy traffic areas. Many times accidents, incidents, or runway incursions have been known to occur in these areas. The Chart Supplement U.S. will list a textual description of hot spots and a graphical depiction is shown on the Airport Diagram. Below is an example of a hot spot area for SUX airport labeled as HS-1. You can see that due to the crossing runways and taxiways this area could be rather confusing to a pilot not familiar with the airport.

By identifying hot spots, airport operators and air traffic controllers are able to plan for the safest possible movement of aircraft and vehicles operating on the movement area. As a pilot try to pre-plan your expected route to/from the runway and have a good idea of where your final destination is ahead of time and be aware of any hot spot areas which you might encounter. By making sure that aircraft surface movements are planned and properly coordinated with air traffic control, pilots add another layer of safety to their flight preparations.

Remember, the ultimate goal of hot spots is to prevent a ground based or runway incursion.

[] [Digg] [Facebook] [Furl] [Google] [Reddit] [StumbleUpon] [Twitter] [Email]

Read more about CFI...

Procedures and Airport Operations: Traffic Patterns

Today we’re featuring an excerpt from the Pilot’s Handbook of Aeronautical Knowledge (FAA-H-8083-25B).

At airports without an operating control tower, a segmented circle visual indicator system, if installed, is designed to provide traffic pattern information. Usually located in a position affording maximum visibility to pilots in the air and on the ground and providing a centralized location for other elements of the system, the segmented circle consists of the following components: wind direction indicators, landing direction indicators, landing strip indicators, and traffic pattern indicators.

Segmented circle

A tetrahedron is installed to indicate the direction of landings and takeoffs when conditions at the airport warrant its use. It may be located at the center of a segmented circle and may be lighted for night operations. The small end of the tetrahedron points in the direction of landing. Pilots are cautioned against using a tetrahedron for any purpose other than as an indicator of landing direction. At airports with control towers, the tetrahedron should only be referenced when the control tower is not in operation. Tower instructions supersede tetrahedron indications.

Landing strip indicators are installed in pairs and are used to show the alignment of landing strips. Traffic pattern indicators are arranged in pairs in conjunction with landing strip indicators and used to indicate the direction of turns when there is a variation from the normal left traffic pattern. (If there is no segmented circle installed at the airport, traffic pattern indicators may be installed on or near the end of the runway.)

At most airports and military air bases, traffic pattern altitudes for propeller-driven aircraft generally extend from 600 feet to as high as 1,500 feet above ground level (AGL). Pilots can obtain the traffic pattern altitude for an airport from the Chart Supplement U.S. Also, traffic pattern altitudes for military turbojet aircraft sometimes extend up to 2,500 feet AGL. Therefore, pilots of en route aircraft should be constantly on alert for other aircraft in traffic patterns and avoid these areas whenever possible. When operating at an airport, traffic pattern altitudes should be maintained unless otherwise required by the applicable distance from cloud criteria according to 14 CFR §91.155. Additional information on airport traffic pattern operations can be found in Chapter 4, “Air Traffic Control,” of the AIM. Pilots can find traffic pattern information and restrictions, such as noise abatement in the Chart Supplement U.S.

Example: Key to Traffic Pattern Operations—Single Runway

  1. Enter pattern in level flight, abeam the midpoint of the runway, at pattern altitude. (1,000′ AGL is recommended pattern altitude unless otherwise established.)
  2. Maintain pattern altitude until abeam approach end of the landing runway on downwind leg.
  3. Complete turn to final at least ¼ mile from the runway.
  4. After takeoff or go-around, continue straight ahead until beyond departure end of runway.
  5. If remaining in the traffic pattern, commence turn to crosswind leg beyond the departure end of the runway within 300 feet of pattern altitude.
  6. If departing the traffic pattern, continue straight out, or exit with a 45° turn (to the left when in a left-hand traffic pattern; to the right when in a right-hand traffic pattern) beyond the departure end of the runway, after reaching pattern altitude.

Traffic pattern operations—single runway.

Example: Key to Traffic Pattern Operations—Parallel Runways

  1. Enter pattern in level flight, abeam the midpoint of the runway, at pattern altitude. (1,000′ AGL is recommended pattern altitude unless otherwise established.)
  2. Maintain pattern altitude until abeam approach end of the landing runway on downwind leg.
  3. Complete turn to final at least ¼ mile from the runway.
  4. Do not overshoot final or continue on a track that penetrates the final approach of the parallel runway
  5. After takeoff or go-around, continue straight ahead until beyond departure end of runway.
  6. If remaining in the traffic pattern, commence turn to crosswind leg beyond the departure end of the runway within 300 feet of pattern altitude.
  7. If departing the traffic pattern, continue straight out, or exit with a 45° turn (to the left when in a left-hand traffic pattern; to the right when in a right-hand traffic pattern) beyond the departure end of the runway, after reaching pattern altitude.
  8. Do not continue on a track that penetrates the departure path of the parallel runway.

Traffic pattern operation—parallel runways.

[] [Digg] [Facebook] [Furl] [Google] [Reddit] [StumbleUpon] [Twitter] [Email]

Read more about ASA...

Helicopters: Hovering

Today, we’ll introduce one of the aerodynamic fundamentals of helicopter flight, hovering, with an excerpt from the Helicopter Flying Handbook (FAA-H-8083-21A).

Hovering is the most challenging part of flying a helicopter. This is because a helicopter generates its own gusty air while in a hover, which acts against the fuselage and flight control surfaces. The end result is constant control inputs and corrections by the pilot to keep the helicopter where it is required to be. Despite the complexity of the task, the control inputs in a hover are simple. The cyclic is used to eliminate drift in the horizontal plane, controlling forward, backward, right and left movement or travel. The throttle, if not governor controlled, is used to control revolutions per minute (rpm). The collective is used to maintain altitude. The pedals are used to control nose direction or heading. It is the interaction of these controls that makes hovering difficult, since an adjustment in any one control requires an adjustment of the other two, creating a cycle of constant correction. During hovering flight, a helicopter maintains a constant position over a selected point, usually a few feet above the ground. The ability of the helicopter to hover comes from the both the lift component, which is the force developed by the main rotor(s) to overcome gravity and aircraft weight, and the thrust component, which acts horizontally to accelerate or decelerate the helicopter in the desired direction. Pilots direct the thrust of the rotor system by using the cyclic to change the tip-path plane as compared to the visible horizon to induce travel or compensate for the wind and hold a position. At a hover in a no-wind condition, all opposing forces (lift, thrust, drag, and weight) are in balance; they are equal and opposite. Therefore, lift and weight are equal, resulting in the helicopter remaining at a stationary hover.

To maintain a hover at a constant altitude, the lift must equal the weight of the helicopter. Thrust must equal any wind and tail rotor thrust to maintain position. The power must be sufficient to turn the rotors and overcome the various drags and frictions involved.

While hovering, the amount of main rotor thrust can be changed to maintain the desired hovering altitude. This is done by changing the angle of incidence (by moving the collective) of the rotor blades and hence the angle of attack (AOA) of the main rotor blades. Changing the AOA changes the drag on the rotor blades, and the power delivered by the engine must change as well to keep the rotor speed constant.

The weight that must be supported is the total weight of the helicopter and its occupants. If the amount of lift is greater than the actual weight, the helicopter accelerates upwards until the lift force equals the weight gain altitude; if thrust is less than weight, the helicopter accelerates downward. When operating near the ground, the effects of the proximity to the surface change this response.

The drag of a hovering helicopter is mainly induced drag incurred while the blades are producing lift. There is, however, some profile drag on the blades as they rotate through the air and a small amount of parasite drag from the non-lift-producing surfaces of the helicopter, such as the rotor hub, cowlings, and landing gear. Throughout the rest of this discussion, the term “drag” includes induced, profile and parasite drag.

An important consequence of producing thrust is torque. Remember Newton’s Third Law: for every action there is an equal and opposite reaction. Therefore, as the engine turns the main rotor system in a counterclockwise direction, the helicopter fuselage wants to turn clockwise. The amount of torque is directly related to the amount of engine power being used to turn the main rotor system. Remember, as power changes, torque changes.

To counteract this torque-induced turning tendency, an antitorque rotor or tail rotor is incorporated into most helicopter designs. A pilot can vary the amount of thrust produced by the tail rotor in relation to the amount of torque produced by the engine. As the engine supplies more power to the main rotor, the tail rotor must produce more thrust to overcome the increased torque effect. This control change is accomplished through the use of antitorque pedals.

A tail rotor is designed to produce thrust in a direction opposite torque. The thrust produced by the tail rotor is sufficient to move the helicopter laterally.

[] [Digg] [Facebook] [Furl] [Google] [Reddit] [StumbleUpon] [Twitter] [Email]

Read more about ASA...

CFI Brief: Airport Signage

Airport signage is an extremely important concept that all pilots will need to have a thorough understanding of prior to earning any  pilot certificate, whether it’s Private Pilot, Sport Pilot, or even a Remote Pilot Certificate.

Right of the bat you should take note that as an airport layout grows in complexity so will the signage associated with that airport. For example an airport with multiple runways will consist of a lot more signage then say an airport with one small runway. The reason being is more runways will require more taxiways and the greater likelihood for a runway or ground based incursion to occur. A pilot will need to pay a lot more attention at signage when operating at complex airports. In addition you will often see different types of signage at a Part 139 airport conducting commercial operations then you might at a small rural airport with no commercial operations.

There are six types of signs that may be found at airports.

Mandatory instruction signs—red background with white inscription. These signs denote an entrance to a runway, critical area, or prohibited area.

Location signs—black with yellow inscription and a yellow border, no arrows. They are used to identify a taxiway or runway location, to identify the boundary of the runway, or identify an instrument landing system (ILS) critical area.

Direction signs—yellow background with black inscription. The inscription identifies the designation of the intersecting taxiway(s) leading out of an intersection.

Destination signs—yellow background with black inscription and arrows. These signs provide information on locating areas, such as runways, terminals, cargo areas, and civil aviation areas.

Information signs—yellow background with black inscription. These signs are used to provide the pilot with information on areas that cannot be seen from the control tower, applicable radio frequencies, and noise abatement procedures. The airport operator determines the need, size, and location of these signs.

Runway distance remaining signs—black background with white numbers. The numbers indicate the distance of the remaining runway in thousands of feet.

The image below are further examples along with their action or purpose of the six types of airport signage discussed above. For further information on airport signage you can refer to the Aeronautical Information Manual (AIM) 2-3-7 or the Pilots Handbook of Aeronautical Knowledge, Chapter 14 Airport Operations.

[] [Digg] [Facebook] [Furl] [Google] [Reddit] [StumbleUpon] [Twitter] [Email]

Read more about CFI...

Aircraft Systems: Pressurized Aircraft

Aircraft are flown at high altitudes for two reasons. First, an aircraft flown at high altitude consumes less fuel for a given airspeed than it does for the same speed at a lower altitude because the aircraft is more efficient at a high altitude. Second, bad weather and turbulence may be avoided by flying in relatively smooth air above the storms. Many modern aircraft are being designed to operate at high altitudes, taking advantage of that environment. In order to fly at higher altitudes, the aircraft must be pressurized or suitable supplemental oxygen must be provided for each occupant. It is important for pilots who fly these aircraft to be familiar with the basic operating principles, which we’ll talk about today with an excerpt from the Pilot’s Handbook of Aeronautical Knowledge (FAA-H-8083-25B).

In a typical pressurization system, the cabin, flight compartment, and baggage compartments are incorporated into a sealed unit capable of containing air under a pressure higher than outside atmospheric pressure. On aircraft powered by turbine engines, bleed air from the engine compressor section is used to pressurize the cabin. Superchargers may be used on older model turbine-powered aircraft to pump air into the sealed fuselage. Piston-powered aircraft may use air supplied from each engine turbocharger through a sonic venturi (flow limiter). Air is released from the fuselage by a device called an outflow valve. By regulating the air exit, the outflow valve allows for a constant inflow of air to the pressurized area.

High performance airplane pressurization system.

A cabin pressurization system typically maintains a cabin pressure altitude of approximately 8,000 feet at the maximum designed cruising altitude of an aircraft. This prevents rapid changes of cabin altitude that may be uncomfortable or cause injury to passengers and crew. In addition, the pressurization system permits a reasonably fast exchange of air from the inside to the outside of the cabin. This is necessary to eliminate odors and to remove stale air.

Standard atmospheric pressure chart.

Pressurization of the aircraft cabin is necessary in order to protect occupants against hypoxia. Within a pressurized cabin, occupants can be transported comfortably and safely for long periods of time, particularly if the cabin altitude is maintained at 8,000 feet or below, where the use of oxygen equipment is not required. The flight crew in this type of aircraft must be aware of the danger of accidental loss of cabin pressure and be prepared to deal with such an emergency whenever it occurs.

The following terms will aid in understanding the operating principles of pressurization and air conditioning systems:

  • Aircraft altitude—the actual height above sea level at which the aircraft is flying
  • Ambient temperature—the temperature in the area immediately surrounding the aircraft
  • Ambient pressure—the pressure in the area immediately surrounding the aircraft
  • Cabin altitude—cabin pressure in terms of equivalent altitude above sea level
  • Differential pressure—the difference in pressure between the pressure acting on one side of a wall and the pressure acting on the other side of the wall. In aircraft air-conditioning and pressurizing systems, it is the difference between cabin pressure and atmospheric pressure.

The cabin pressure control system provides cabin pressure regulation, pressure relief, vacuum relief, and the means for selecting the desired cabin altitude in the isobaric and differential range. In addition, dumping of the cabin pressure is a function of the pressure control system. A cabin pressure regulator, an outflow valve, and a safety valve are used to accomplish these functions.

The cabin pressure regulator controls cabin pressure to a selected value in the isobaric range and limits cabin pressure to a preset differential value in the differential range. When an aircraft reaches the altitude at which the difference between the pressure inside and outside the cabin is equal to the highest differential pressure for which the fuselage structure is designed, a further increase in aircraft altitude will result in a corresponding increase in cabin altitude. Differential control is used to prevent the maximum differential pressure, for which the fuselage was designed, from being exceeded. This differential pressure is determined by the structural strength of the cabin and often by the relationship of the cabin size to the probable areas of rupture, such as window areas and doors.

The cabin air pressure safety valve is a combination pressure relief, vacuum relief, and dump valve. The pressure relief valve prevents cabin pressure from exceeding a predetermined differential pressure above ambient pressure. The vacuum relief prevents ambient pressure from exceeding cabin pressure by allowing external air to enter the cabin when ambient pressure exceeds cabin pressure. The flight deck control switch actuates the dump valve. When this switch is positioned to ram, a solenoid valve opens, causing the valve to dump cabin air into the atmosphere.

The degree of pressurization and the operating altitude of the aircraft are limited by several critical design factors. Primarily, the fuselage is designed to withstand a particular maximum cabin differential pressure.

Several instruments are used in conjunction with the pressurization controller. The cabin differential pressure gauge indicates the difference between inside and outside pressure. This gauge should be monitored to assure that the cabin does not exceed the maximum allowable differential pressure. A cabin altimeter is also provided as a check on the performance of the system. In some cases, these two instruments are combined into one. A third instrument indicates the cabin rate of climb or descent. A cabin rate-of-climb instrument and a cabin altimeter are illustrated in the figure below.

Cabin pressurization instruments. (Click to expand.)

[] [Digg] [Facebook] [Furl] [Google] [Reddit] [StumbleUpon] [Twitter] [Email]

Read more about ASA...

CFI Brief: February 2018 Test Roll

The FAA February test cycle resulted in few changes or updates to the FAA Airman Knowledge Tests. The FAA Aviation Exam Board continues to work to align questions within the context of a specific Area of Operation/Task as outlined in the various Airman Certification Standards publications. The goal of this boarding process is to ensure all test questions correlate to a knowledge, risk management or skill element. The FAA makes their intentions clear by the Frequently Asked Questions and What’s New documents which are posted each test cycle. The next test cycle update is expected June 11th 2018.

Below is a list of the most recent changes affecting all pilot knowledge test question banks.

  • The FAA expects to develop test questions on the new BasicMed regulation in the future. Third-class medical questions will remain, since BasicMed is an addition to the medical certification structure, not a replacement of the third-class medical.
  • New questions based on FAA Form 7233-4, International Flight Plan (ICAO format)— release date is TBD.
  • Student Pilot/Medical Certificate – New questions based on the Student Pilot Certificate rule that took effect on April 1, 2016 are being developed. We expect to add these questions to appropriate knowledge tests by June 11, 2018.

Instrument Rating Airplane (IRA), Airline Transport Pilot Multi-Engine (ATM), Aircraft Dispatcher (ADX)  – All VOR/DME RNAV questions have been removed from the question banks for these knowledge tests.

These changes have been noted by ASA and updates for Prepware Software, Prepware Online, and Test Prep books will be available shortly. If you would like to be notified when these updates have become available be sure to follow the link below and sign-up for notifications.


Handbook and Advisory Circular Updates

New and cool from ASA!

 The Complete Remote Pilot – Available NOW

The Droner’s Manual – Available NOW

The Flight Instructors Manual – NEW Sixth Edition

[] [Digg] [Facebook] [Furl] [Google] [Reddit] [StumbleUpon] [Twitter] [Email]

Read more about CFI...

Procedures and Airport Operations: Short-Field Approach and Landing

Short-field approaches and landings require the use of procedures for approaches and landings at fields with a relatively short landing area or where an approach is made over obstacles that limit the available landing area.  Short-field operations require the pilot fly the airplane at one of its crucial performance capabilities while close to the ground in order to safely land within confined areas. This low-speed type of power-on approach is closely related to the performance of flight at minimum controllable airspeeds. Today’s post is an excerpt from the Airplane Flying Handbook (FAA-8083-3B).

Landing over an obstacle.

Landing on a short-field.

To land within a short-field or a confined area, the pilot must have precise, positive control of the rate of descent and airspeed to produce an approach that clears any obstacles, result in little or no floating during the round out, and permit the airplane to be stopped in the shortest possible distance.

The procedures for landing in a short-field or for landing approaches over obstacles as recommended in the AFM/ POH should be used. A stabilized approach is essential. These procedures generally involve the use of full flaps and the final approach started from an altitude of at least 500 feet higher than the touchdown area. A wider than normal pattern is normally used so that the airplane can be properly configured and trimmed. In the absence of the manufacturer’s recommended approach speed, a speed of not more than 1.3 VSO is used. For example, in an airplane that stalls at 60 knots with power off, and flaps and landing gear extended, an approach speed no higher than 78 knots is used. In gusty air, no more than one-half the gust factor is added. An excessive amount of airspeed could result in a touchdown too far from the runway threshold or an after landing roll that exceeds the available landing area. After the landing gear and full flaps have been extended, simultaneously adjust the power and the pitch attitude to establish and maintain the proper descent angle and airspeed. A coordinated combination of both pitch and power adjustments is required. When this is done properly, very little change in the airplane’s pitch attitude and power setting is necessary to make corrections in the angle of descent and airspeed.

Stabilized approach.

Unstabilized approach.

The short-field approach and landing is in reality an accuracy approach to a spot landing. The procedures previously outlined in the section on the stabilized approach concept are used. If it appears that the obstacle clearance is excessive and touchdown occurs well beyond the desired spot leaving insufficient room to stop, power is reduced while lowering the pitch attitude to steepen the descent path and increase the rate of descent. If it appears that the descent angle does not ensure safe clearance of obstacles, power is increased while simultaneously raising the pitch attitude to shallow the descent path and decrease the rate of descent. Care must be taken to avoid an excessively low airspeed. If the speed is allowed to become too slow, an increase in pitch and application of full power may only result in a further rate of descent. This occurs when the AOA is so great and creating so much drag that the maximum available power is insufficient to overcome it. This is generally referred to as operating in the region of reversed command or operating on the back side of the power curve. When there is doubt regarding the outcome of the approach, make a go around and try again or divert to a more suitable landing area.

Because the final approach over obstacles is made at a relatively steep approach angle and close to the airplane’s stalling speed, the initiation of the round out or flare must be judged accurately to avoid flying into the ground or stalling prematurely and sinking rapidly. A lack of floating during the flare with sufficient control to touch down properly is verification that the approach speed was correct.

Touchdown should occur at the minimum controllable airspeed with the airplane in approximately the pitch attitude that results in a power-off stall when the throttle is closed. Care must be exercised to avoid closing the throttle too rapidly, as closing the throttle may result in an immediate increase in the rate of descent and a hard landing.

Upon touchdown, the airplane is held in this positive pitch attitude as long as the elevators remain effective. This provides aerodynamic braking to assist in deceleration. Immediately upon touchdown and closing the throttle, appropriate braking is applied to minimize the after-landing roll. The airplane is normally stopped within the shortest possible distance consistent with safety and controllability. If the proper approach speed has been maintained, resulting in minimum float during the round out and the touchdown made at minimum control speed, minimum braking is required.

Common errors in the performance of short-field approaches and landings are:

  • Failure to allow enough room on final to set up the approach, necessitating an overly steep approach and high sink rate
  • Unstable approach
  • Undue delay in initiating glide path corrections
  • Too low an airspeed on final resulting in inability to flare properly and landing hard
  • Too high an airspeed resulting in floating on round out
  • Prematurely reducing power to idle on round out resulting in hard landing
  • Touchdown with excessive airspeed
  • Excessive and/or unnecessary braking after touchdown
  • Failure to maintain directional control
  • Failure to recognize and abort a poor approach that cannot be completed safely
[] [Digg] [Facebook] [Furl] [Google] [Reddit] [StumbleUpon] [Twitter] [Email]

Read more about ASA...

Procedures and Airport Operations: Night Flight Approaches and Landings

The mechanical operation of an airplane at night is no different than operating the same airplane during the day. The pilot, however, is affected by various aspects of night operations and must take them into consideration during night flight operations. Some are actual physical limitations affecting all pilots while others, such as equipment requirements, procedures, and emergency situations, must also be considered. Today, we’re featuring an excerpt from the Airplane Flying Handbook (8083-3B) on flying approaches and landings at night.

When approaching the airport to enter the traffic pattern and land, it is important that the runway lights and other airport lighting be identified as early as possible. If the airport layout is unfamiliar, sighting of the runway may be difficult until very close-in due to the maze of lights observed in the area. Fly toward the rotating beacon until the lights outlining the runway are distinguishable. To fly a traffic pattern of proper size and direction, the runway threshold and runway-edge lights must be positively identified. Once the airport lights are seen, these lights should be kept in sight throughout the approach.

Use light patterns for orientation.

Distance may be deceptive at night due to limited lighting conditions. A lack of intervening references on the ground and the inability to compare the size and location of different ground objects cause this. This also applies to the estimation of altitude and speed. Consequently, more dependence must be placed on flight instruments, particularly the altimeter and the airspeed indicator. When entering the traffic pattern, always give yourself plenty of time to complete the before landing checklist. If the heading indicator contains a heading bug, setting it to the runway heading is an excellent reference for the pattern legs.

Maintain the recommended airspeeds and execute the approach and landing in the same manner as during the day. A low, shallow approach is definitely inappropriate during a night operation. The altimeter and VSI should be constantly cross-checked against the airplane’s position along the base leg and final approach. A visual approach slope indicator (VASI) is an indispensable aid in establishing and maintaining a proper glide path.


After turning onto the final approach and aligning the airplane midway between the two rows of runway-edge lights, note and correct for any wind drift. Throughout the final approach, use pitch and power to maintain a stabilized approach. Flaps are used the same as in a normal approach. Usually, halfway through the final approach, the landing light is turned on. Earlier use of the landing light may be necessary because of “Operation Lights ON” or for local traffic considerations. The landing light is sometimes ineffective since the light beam will usually not reach the ground from higher altitudes. The light may even be reflected back into the pilot’s eyes by any existing haze, smoke, or fog. This disadvantage is overshadowed by the safety considerations provided by using the “Operation Lights ON” procedure around other traffic.

The round out and touchdown is made in the same manner as in day landings. At night, the judgment of height, speed, and sink rate is impaired by the scarcity of observable objects in the landing area. An inexperienced pilot may have a tendency to round out too high until attaining familiarity with the proper height for the correct round out. To aid in determining the proper round out point, continue a constant approach descent until the landing lights reflect on the runway and tire marks on the runway can be seen clearly. At this point, the round out is started smoothly and the throttle gradually reduced to idle as the airplane is touching down. During landings without the use of landing lights, the round out may be started when the runway lights at the far end of the runway first appear to be rising higher than the nose of the airplane. This demands a smooth and very timely round out and requires that the pilot feel for the runway surface using power and pitch changes, as necessary, for the airplane to settle slowly to the runway. Blackout landings should always be included in night pilot training as an emergency procedure.

Roundout when tire marks are visible.

[] [Digg] [Facebook] [Furl] [Google] [Reddit] [StumbleUpon] [Twitter] [Email]

Read more about ASA...

CFI Brief: Aviation Weather Services (AC 00-45H) – UPDATE

The FAA has issued a Change 1 to Advisory Circular AC 00-45H effective January 8th 2018. AC 00-45, more commonly referred as Aviation Weather Services, is the go-to resource for U.S. aviation weather products and services. This document is organized using the FAA’s three distinct types of aviation weather information: observations, analyses, and forecasts. This is a vital resource and should be a part of any aviators library.

Here are some of the highlights on what you need to know regarding Change 1:

  • DUATS II no longer requires an airman medical to access the system (
  • A new section was added to Chapter 3, Terminal Doppler Weather Radar (TDWR). The TDWR network is a Doppler weather radar system operated by the FAA, which is used primarily for the detection of hazardous windshear conditions, precipitation, and winds aloft on and near major airports situated in climates with great exposure to thunderstorms in the United States. To review this information refer to Section 3.4.
  • A new sub-section was added to Chapter 3, POES. POES stands for the Polar Orbiting Environment Satellites, although more recently the U.S. polar satellite program has been rechristened the Joint Polar Satellite System (JPSS). Polar satellites are not stationary. They track along various orbits around the poles. Typically, they are somewhere between 124 and 1,240 mi above the Earth’s surface. The satellites scan the Earth in swaths as they pass by on their tracks. To review this information refer to Section 3.5.3.
  • Note in chapter 5 section 6 that Collaborative Convective Forecast Planning (CCFP) is now Convective Forecast (TCF). The figures and language throughout this section have been updated to reflect this updated weather product. To review this information refer to Section 5.6.3.
  • A new section was added to Chapter 5, Graphical Forecasts for Aviation (GFA). The GFAs are a set of Web-based displays which are expected to provide the necessary aviation weather information to give users a complete picture of the weather that may impact flights in the CONUS. These displays are updated continuously and provide forecasts, observational data, and warnings of weather phenomena that can be viewed from 14 hours in the past to 15 hours in the future. This product covers the surface up to FL420 (or 42,000 ft MSL). Wind, icing, and turbulence forecasts are available in 3,000-ft increments from the surface up to 18,000 ft MSL, and in 6,000-ft increments from 18,000 ft MSL to FL420. Turbulence forecasts are also broken into low (below 18,000 ft MSL) and high (above 18,000 ft MSL) graphics. A maximum icing graphic and maximum wind velocity graphic (regardless of altitude) are also available. The graphic below is an example of an aviation forecast for clouds. To review this information refer to Section 5.9.
  • A new section was added to Chapter 5, Localized Aviation Model Output Statistics (MOS) Program (LAMP). The LAMP weather product is a statistical model program that provides specific point forecast guidance on sensible weather elements (perceivable elements such as temperature, wind, sky cover, etc.). LAMP weather product forecasts are provided in both graphical and coded text format, and are currently generated for more than 1,500 locations. The LAMP weather product is entirely automated and may not be as accurate as a forecast generated with human involvement. However, information from the LAMP weather product can be used in combination with Terminal Aerodrome Forecasts (TAF), and other weather reporting and forecasting products and tools, to provide additional information and enhance situational awareness regarding a particular location. To review this information refer to Section 5.10.  
  • Hawaii was added to Section 5.11.1 as an area of issuance for an Area Forecast (FA). You will find new figures and detailed information regarding the Hawaii Area Forecast. To review this information refer to Section 5.11.1.
  • A new sub-section was added to Chapter 5, Low-Level Wind Shear Alert System (LLWAS). The LLWAS system was originally developed by the FAA in the 1970s to detect large-scale wind shifts (sea breeze fronts, gust fronts, and cold and warm fronts). It was developed by the FAA in response to an accident at JFK Airport in New York. The aircraft (Eastern 66) landed during a wind shift caused by interacting sea breeze and thunderstorm outflows. To review this information refer to Section

ASA will have an Change 1 update available shortly to go along with all printed copies of the Aviation Weather Handbook (ASA-AC00-45H). The update will be posted on the Textbooks Update page at

[] [Digg] [Facebook] [Furl] [Google] [Reddit] [StumbleUpon] [Twitter] [Email]

Read more about CFI...

Ground Reference Maneuvers: Rectangular Course

A pilot must develop the proper coordination, timing, and attention to accurately and safely maneuver the airplane with regard to the required attitudes and ground references. Ground reference maneuvers are the principle flight maneuvers that combine the four fundamentals (straight-and-level, turns, climbs, and descents) into a set of integrated skills that the pilot uses in their everyday flight activity. A pilot must develop the skills necessary to accurately control, through the effect and use of the flight controls, the flightpath of the airplane in relationship to the ground. From every takeoff to every landing, a pilot exercises these skills in controlling the airplane.

Today, we’re featuring an excerpt from the Airplane Flying Handbook (FAA-H-8083-3B) on a principle ground reference maneuver known as the rectangular course.

The rectangular course is a training maneuver in which the airplane maintains an equal distance from all sides of the selected rectangular references. The maneuver is accomplished to replicate the airport traffic pattern that an airplane typically maneuvers while landing. While performing the rectangular course maneuver, the pilot should maintain a constant altitude, airspeed, and distance from the ground references. The maneuver assists the pilot in practicing the following:

  • Maintaining a specific relationship between the airplane and the ground.
  • Dividing attention between the flightpath, groundbased references, manipulating the flight controls, and scanning for outside hazards and instrument indications.
  • Adjusting the bank angle during turns to correct for groundspeed changes in order to maintain constant radius turns.
  • Rolling out from a turn with the required wind correction angle to compensate for any drift cause by the wind.
  • Establishing and correcting the wind correction angle in order to maintain the track over the ground.
  • Preparing the pilot for the airport traffic pattern and subsequent landing pattern practice.

First, a square, rectangular field, or an area with suitable ground references on all four sides, as previously mentioned should be selected consistent with safe practices. The airplane should be flown parallel to and at an equal distance between one-half to three-fourths of a mile away from the field boundaries or selected ground references. The flightpath should be positioned outside the field boundaries or selected ground references so that the references may be easily observed from either pilot seat. It is not practicable to fly directly above the field boundaries or selected ground references. The pilot should avoid flying close to the references, as this will require the pilot to turn using very steep bank angles, thereby increasing aerodynamic load factor and the airplane’s stall speed, especially in the downwind to crosswind turn.

The entry into the maneuver should be accomplished downwind. This places the wind on the tail of the airplane and results in an increased groundspeed. There should be no wind correction angle if the wind is directly on the tail of the airplane; however, a real-world situation results in some drift correction. The turn from the downwind leg onto the base leg is entered with a relatively steep bank angle. The pilot should roll the airplane into a steep bank with rapid, but not excessive, coordinated aileron and rudder pressures. As the airplane turns onto the following base leg, the tailwind lessens and becomes a crosswind; the bank angle is reduced gradually with coordinated aileron and rudder pressures. The pilot should be prepared for the lateral drift and compensate by turning more than 90° angling toward the inside of the rectangular course.

The next leg is where the airplane turns from a base leg position to the upwind leg. Ideally, the wind is directly on the nose of the airplane resulting in a direct headwind and decreased groundspeed; however, a real-world situation results in some drift correction. The pilot should roll the airplane into a medium banked turn with coordinated aileron and rudder pressures. As the airplane turns onto the upwind leg, the crosswind lessens and becomes a headwind, and the bank angle is gradually reduced with coordinated aileron and rudder pressures. Because the pilot was angled into the wind on the base leg, the turn to the upwind leg is less than 90°.

The next leg is where the airplane turns from an upwind leg position to the crosswind leg. The pilot should slowly roll the airplane into a shallow-banked turn, as the developing crosswind drifts the airplane into the inside of the rectangular course with coordinated aileron and rudder pressures. As the airplane turns onto the crosswind leg, the headwind lessens and becomes a crosswind. As the turn nears completion, the bank angle is reduced with coordinated aileron and rudder pressures. To compensate for the crosswind, the pilot must angle into the wind, toward the outside of the rectangular course, which requires the turn to be less than 90°.

The final turn is back to the downwind leg, which requires a medium-banked angle and a turn greater than 90°. The groundspeed will be increasing as the turn progresses and the bank should be held and then rolled out in a rapid, but not excessive, manner using coordinated aileron and rudder pressures.

For the maneuver to be executed properly, the pilot must visually utilize the ground-based, nose, and wingtip references to properly position the airplane in attitude and in orientation to the rectangular course. Each turn, in order to maintain a constant ground-based radius, requires the bank angle to be adjusted to compensate for the changing groundspeed—the higher the groundspeed, the steeper the bank. If the groundspeed is initially higher and then decreases throughout the turn, the bank angle should progressively decrease throughout the turn. The converse is also true, if the groundspeed is initially slower and then increases throughout the turn, the bank angle should progressively increase throughout the turn until rollout is started. Also, the rate for rolling in and out of the turn should be adjusted to prevent drifting in or out of the course. When the wind is from a direction that could drift the airplane into the course, the banking roll rate should be slow. When the wind is from a direction that could drift the airplane to the outside of the course, the banking roll rate should be quick.

The following are the most common errors made while performing rectangular courses:

  • Failure to adequately clear the area above, below, and on either side of the airplane for safety hazards, initially and throughout the maneuver.
  • Failure to establish a constant, level altitude prior to entering the maneuver.
  • Failure to maintain altitude during the maneuver.
  • Failure to properly assess wind direction.
  • Failure to establish the appropriate wind correction angle.
  • Failure to apply coordinated aileron and rudder pressure, resulting in slips and skids.
  • Failure to manipulate the flight controls in a smooth and continuous manner.
  • Failure to properly divide attention between controlling the airplane and maintaining proper orientation with the ground references.
  • Failure to execute turns with accurate timing.
[] [Digg] [Facebook] [Furl] [Google] [Reddit] [StumbleUpon] [Twitter] [Email]

Read more about ASA...

You may want to put some text here



Get this Wordpress newsletter widget
for newsletter software